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The computational-geometric problems arising when a linear interface cuts a cube
are considered. They are of interest in particular for the calculation of volume frac-
tions or interface positions in three-dimensional interface calculations in the Volume
of Fluid (VOF) methods. Typically, the normal vector is known. One then wants to
compute the volume fraction knowing the interface position, or conversely the inter-
face position knowing the volume fraction. Explicit expressions of general use are
given, and the algorithms used to search for solutions are described in detail. Explicit
formulas for cubic roots are found to be less than two thirds as time consuming as
Newton–Raphson iterations. c© 2000 Academic Press
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1. INTRODUCTION

The reconstruction of a boundary between two materials in a numerical computation is
of interest in many different domains, ranging from scientific topics such as combustion,
two-phase flows, and computer graphics to applications such as ink-jet printers, nozzles, and
other technologies. Among the approaches which have been proposed and have undergone
continual improvement we can mention markers [1], level sets [2], and volume tracking
[3–5].

In this note we focus on one of the basic steps in these algorithms: the computation
of the intersection of a planar interface with a right hexahedron or a cube, as a function
of the volume below the interface. More precisely, the available data in the computation
comprise the volume fractionVf in each cell of the grid: cells cut by an interface haveVf
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between zero and one; those without an interface haveVf equal to zero or one. We initially
approached this problem from the point of view of volumetric tracking methods and specif-
ically a piecewise linear interface calculation (PLIC), although the results are useful in a
more general context. In PLIC methods, the boundary between materials is approximated in
each computational cell with a linear interface defined by the equationm · x=α, wherem
is given. (Indeed the problem of finding the normal vectorm is complex and nonlocal and is
discussed independently in the references.) We distinguish the “forward” problem, that is,
to find the volume fractionVf occupied by one species givenα, from the “inverse” problem,
which consists of findingα given the volume fraction. The relation betweenVf andα is
continuous and one-to-one but in PLIC the overall reconstruction is not in general contin-
uous at the cell boundary. Both the inverse and forward problems can occur several times,
according to the chosen numerical schemes, during the reconstruction and propagation of the
interface.

As stated, the problem is essentially geometric in nature. Several implementations use
extensively embeddedif-else if-endifconstructs. In some cases, the large number of levels
in these contructs and the number of cases make the code difficult to compile optimally
and to maintain. In this note, a careful investigation of the geometry and of the analytical
expression connectingVf andα produces a significant reduction in the number of possible
cases and a corresponding streamlining of the numerical algorithm, increasing in this way
the efficiency and clarity of the resulting code.

2. THE STANDARD PROBLEM

In three-dimensional (3D) space with Cartesian coordinates(x1, x2, x3) we consider
a rectangular parallelepiped of sides1x1, 1x2, 1x3 and a plane with normal vector
m= (m1,m2,m3) given by the equation

m1x1+m2x2+m3x3=α, (1)

where the plane constantα is a parameter related to the smallest distance from the origin. In
the standard forward problem we assume that the three coefficientsmi are all positive and
we need to determine the “cut volume”ABGHKNMLof the rectangular cell which is also
below the given plane, as shown in Fig. 1. Then the functionf (x1, x2, x3)=m1x1+m2x2+
m3x3− α is negative at pointAand positive at pointF , while the vectorm is pointing toward
the region wheref is positive. If we interchange the two species the normal vector reverses
its orientation, the coefficientsmi are now negative, and the volume of interest becomes
DCFEKNML. In Ref. [6] we have shown that the volumeABGHKNML is given by the
expression

V = 1

6m1m2m3

[
α3−

3∑
i=1

F3(α −mi1xi )+
3∑

i=1

F3(α − αmax+mi1xi )

]
, (2)

with αmax=
∑3

i=1mi1xi and the functionFn(y) defined as

Fn(y) =
{

yn for y > 0

0 for y <= 0.
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FIG. 1. The “cut volume” is the region inside the parallelepipedABCEFGHand below the planeIJK.

We recall that the first term(α3/6m1m2m3) is the volume of the tetrahedronAIJK, the
first sum removes tetrahedra such asHIPL, when the verticesI , J, andK move beyond
the cell faces, and the second sum adds back the volumes of the smaller tetrahedra such
asGOPM, when the linesIJ, JK, andKI are completely outside the cell boundary. The
functionsF3(y) make sure that these terms are algebraically added only when the above-
mentioned conditions are satisfied. The functionV varies from zero, whenα= 0, to the
volume of the parallelepipedV0=1x11x21x3, whenα=αmax. The volume fractionVf

is defined asVf =V/V0 and varies correspondingly from zero to one. In two dimensions
(2D), expression (2) simplifies to

V = 1

2m1m2

[
α2−

2∑
i=1

F2(α −mi1xi )

]
, (3)

where, as shown in Fig. 2, the contributions toV represent respectively the areas of the three
trianglesAEH, BFE, andDGH, which are geometrically similar. Again, the functionF2(y)
makes sure that the last two triangles are considered only when the verticesE and H
move outside the cell. For the moment, we restrict our analysis to a unitary cube,1xi = 1;
then the volumeV and the volume fractionVf coincide. We also normalize the plane
equation (1) by dividing it by(

∑3
i=1mi ); thenαmax=

∑3
i=1mi = 1. The normalization of the

two-dimensional problem is similar. Later, we will generalize this procedure to negativemi

and to a rectangular parallelepiped. We can now summarize some useful properties:

(1) V is a continuous, one-to-one, monotonically increasing function ofα with contin-
uous first derivative.

(2) BothV andα vary in the range [0, 1].
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FIG. 2. The “cut volume” refers to the region within the rectangleABCDwhich also lies below the straight
line EH.

(3) The expression forV is invariant with respect to a permutation of the indices, so we
need to consider only one case, saym1≤m2≤m3 in 3D andm1≤m2 in 2D.

(4) The graph ofV has odd symmetry with respect to the point(V, α)= (1/2, 1/2), so
we restrict the analysis to the range 0≤ α ≤ 1/2.

(5) In 3D we letm12=m1+m2 and m=min(m12,m3); then V varies cubically in
the region 0≤ α ≤ m1, quadratically inm1 ≤ α ≤ m2, again cubically inm2 ≤ α ≤ m,
and finally in m≤ α ≤ 1/2 cubically if m=m3 and otherwise linearly ifm=m12; in
2D with m=m1, V varies quadratically in the region 0≤ α ≤ m and linearly inm≤
α ≤ 1/2.

(6) In the interval 0≤ α ≤ 1/2 and for arbitrarymi there is a lower bound forV(α).
In 3D this line is realized form1=m2=m3= 1/3, corresponding to a plane cutting each
coordinate plane with a 45◦-angle line. The volumeV is a cubic function ofα in the whole
domain and it is given by the expressionsV = 9α3/2 for 0≤α≤ 1/3 andV = (−18α3+
27α2− 9α + 1)/2 for 1/3≤α≤ 1/2. In 2D the lower bound is realized form1=m2= 1/2,
corresponding to a 45◦-angle line, and it is a quadratic function ofα: V = 2α2.

(7) In the same region there is also an upper bound. In 3D this is the line withm1=m2= 0
and it represents a plane parallel to one of the three coordinates planes. The functionV(α)
is linear:V =α. In 2D the same linear function is obtained withm1= 0, representing a line
parallel to one of the two coordinate axes.

(8) In 3D, the limitm1→ 0 is smooth: the lines become those of the two-dimensional
problem. In particular, the first cubic region collapses into the origin, the quadratic one
extends itself to 0≤α≤m2=m, the next cubic region collapses to the point of the line at
α=m, and finally the straight line, since nowm3= (1−m) ≥ m12=m, extends itself to
the intervalm≤α≤ 1/2. The further limitm2→ 0 is also smooth with the quadratic region
collapsing into the origin.

The two limiting curves are shown in Figs. 3 and 4 for the 2D and 3D cases, respectively,
together with two other intermediate lines. The full circles in the two figures denote the
points where the functionV(α) changes its behaviour.

A direct numerical implementation of formula (2) becomes unstable whenm1→ 0 or
both m1,m2→ 0. In the 2D problem one must face only the first limit. This is because
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FIG. 3. The upper and lower limiting curves (solid lines) for the two-dimensional problem are shown together
with two intermediate lines (dashed lines). The functionV(α) changes from quadratic to linear behaviour at the
points denoted by the full circles.

FIG. 4. The upper and lower limiting curves (solid lines) for the three-dimensional problem are shown together
with two intermediate lines (dashed lines). For these two lines, the top one has(m1 +m2)<m3; the reverse is true
for the lower one. The full circles denote points where the functionV(α) changes behaviour.
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V → 1 asα→ 1 and whenm1 becomes very small the numerator of expression (2) must be
O(m1). However, this small number is obtained as an algebraic sum ofO(1) numbers and
this is the source of a numerical instability due to roundoff errors. The oscillations become
wilder and wilder asm1→ 0. A simple, but efficient solution is to artificially set to zerom1

(or bothm1 andm2, if necessary), when it is smaller than a prescribed value, and to use the
finite limit of formula (2). The error introduced in the direction of the normal vector is then
very small. Elsewhere formula (2) can be used safely. However, from the point of view of
a numerical implementation this is not much cheaper than expanding analytically equation
(2) in each region and implementing a simpleif-else if-endifconstruct. The analytical
expressions for both the forward and inverse problems, restricted to the ranges 0≤ V ≤ 1/2
and 0≤α≤ 1/2, can be derived with some straightforward algebra from relations (2) and (3).

Two-Dimensional Forward Problem

For the 2D forward problem we have

V = α2

2m(1−m)
for 0≤α <m,

V = α

(1−m)
− V1 for m≤α≤ 1/2.

Two-Dimensional Inverse Problem

The 2D inverse problem is specified by

α =
√

2m(1−m)V for 0≤V <V1,

α = V(1−m)+ m

2
for V1≤V ≤ 1/2,

with V1=m/2(1−m). Notice that the limitm= 0 is correctly described by these ex-
pressions.

Three-Dimensional Forward Problem

In 3D the forward problem is

V = α3

6m1m2m3
for 0≤α <m1,

V = α(α −m1)

2m2m3
+ V1 for m1≤α <m2,

V = α2(3m12− α)+m2
1(m1− 3α)+m2

2(m2− 3α)

6m1m2m3
for m2≤α <m;

for the fourth interval there are two possible cases, one form=m3<m12 and the other for
m=m12<m3:

V = α2(3− 2α)+m2
1(m1− 3α)+m2

2(m2− 3α)+m2
3(m3− 3α)

6m1m2m3
for m3≤α≤ 1/2,

V = 2α −m12

2m3
for m12≤α≤ 1/2.
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Three-Dimensional Inverse Problem

The 3D inverse problem is given by

α = 3
√

6m1m2m3V, for 0≤V <V1,

α = 1

2

(
m1+

√
m2

1+ 8m2m3(V − V1)
)
, for V1≤V <V2,

P(α) = a′3 α
3+ a′2 α

2+ a′1α + a′0 = 0, for V2≤V <V3;

again there are two cases in the fourth interval, one forV3=V31<V32 and the other for
V3=V32<V31:

P(α) = a′′3 α
3+ a′′2 α

2+ a′′1 α + a′′0 = 0, for V31≤V ≤ 1/2,

α = m3V + m12

2
, for V32≤V ≤ 1/2 .

In the previous relationsV1=m2
1/(max(6m2m3, ε)), which is an approximation of the

valuem2
1/6m2m3. This approximation is needed because the limit forV1 asm1,m2→ 0 is

zero; however, numerically we must prevent the denominator ofV1 from becoming zero, so
ε is an arbitrary small number. Aside from that, the above set of expressions forV andα is
well behaved numerically for all possiblemi . The other limiting values of the range of va-
lidity of each relation are given by the following expressions:V2=V1+ (m2−m1)/2m3,
V3=V31= [m2

3(3m12−m3)+m2
1(m1− 3m3)+m2

2(m2− 3m3)]/(6m1m2m3) when m=
m3 or V3=V32=m12/2m3 whenm=m12. For the coefficients of the two cubic polynomi-
als we havea′3=−1, a′2= 3m12, a′1=−3(m2

1+m2
2), a′0=m3

1+m3
2− 6m1m2m3V , a′′3 =

−2, a′′2 = 3, a′′1 =−3(m2
1+m2

2+m2
3), anda′′0 =m3

1+m3
2+m3

3− 6m1m2m3V .
In the third and fourth region, whereV31≤V ≤ 1/2, we need to find the roots of the cubic

polynomialP(α) that has the following properties:

(1) P(±∞)=∓∞.
(2) For a givenV in these two regions, there are three real roots ofP(α) and the proper

one is the middle one. For this root,P(α) is an increasing function ofα, as shown in Fig. 5,
consistent with properties (1) and (5) of formula (2).

An analytical solution can now be found easily [7, 8]. We first divide bya3 the third-degree
polynomial inα, so thata3= 1, and let

p0 = a1

3
− a2

2

9
; q0 = a1a2− 3a0

6
− a3

2

27
;

then the discriminant1= p3
0 + q2

0 is negative, which is the condition for having three real
roots. Finally by letting [9] cos(3θ)=q0/

√
−p3

0, it follows that the root of interest is

α = √−p0 (
√

3 sinθ − cosθ)− a2

3
.

While all previous analytical relations forV andα involve at most the calculation of a
square or a cubic root, here we need to evaluate a few square roots and trigonometric func-
tions. It is then questionable if for this case a direct root-finding routine is computationally
less expensive. We have implemented such a routine based on the Newton–Raphson (NR)
method in conjunction with the secant method [10]. In the case where the NR iteration sends
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FIG. 5. Typical behaviour of the cubic polynomialP(α). The region of validity of the expression is that within
the two vertical segments.

the point outside theα-interval, we make a linear interpolation instead of a simple bisection
of the interval. This is motivated by the smooth behaviour of the functionV (as seen in
Figs. 4 and 5), and we have found that this consistently reduces the number of iterations
when the NR forecast goes out of range. An optimal initial guess forα is calculated with
a linear average from theα and V values that delimit the region whereV(α) is cubic.
We run the problem for several millions of different situations by randomly changing the
coefficientsmi and the points inside the proper range in volume fraction. We need an av-
erage number of less than four iterations to achieve a convergence of<10−16 (in double
precision); nevertheless the direct use of the analytical expressions (in our case the gcc math
library functions) is less than two-thirds as time consuming as the numerical approach.

3. THE GENERAL PROBLEM

We are now in the condition to generalize both the forward and inverse problems to
rectangular grids and negativemi . For the extension to rectangular grids we consider formula
(2) for the volumeV and divide it by the cell volumeV0=1x11x21x3. We then obtain
the following expression for the volume fractionVf =V/V0:

Vf = 1

6
∏3

i=1 mi1xi

[
α3−

3∑
i=1

F3(α −mi1xi ) +
3∑

i=1

F3(α − αmax+mi1xi )

]
. (4)

We observe that with the linear transformationm′i =mi1xi formula (4) reduces to expression
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(2) with1xi = 1, as long as the plane equation (1) is normalized withαmax= 1. All the re-
sults obtained in the previous section can then be easily extended to a rectangular cell. This
observation applies to the two-dimensional case as well.

If one or more of themi are negative, the geometry can be brought to the standard case
depicted in Figs. 1 and 2, with the linear transformationx′i =1xi − xi , which describes a
simple mirror reflection with respect to the planexi =1xi /2. After the calculation ofVf

or α with the given analytical expressions, the configuration is brought back to the actual
position with similar reflections.

Finally, it is often necessary to calculate the volumeV cut by the linear interface relative
to a right parallelepiped that is different from the grid cell. This is the case if, for example,
it is necessary to calculate the volume fraction in neighbouring cells in an iterative scheme
which tries to optimize the value of the normal vectorm [3, 5] or in the propagation of
the interface, in particular with split schemes, where the volumeV represents the fluid flux
across the cell boundary. This problem can be easily solved by moving the origin of the
local Cartesian coordinate system (in our case pointA of Figs. 1 and 2) to one vertex of the
parallelepiped. The translation is clearly described by the linear transformationsx′i = xi −
x0i , where the vertex(x01, x02, x03) is such that all sides1x′i of the right tetrahedron are
positive.

4. CONCLUSION

We have presented a unified and general approach to the problem of connecting the
nonhomogeneous termα of a linear equation representing the interface to the volume
fractionVf of a cell of a rectangular grid divided in two parts by the interface. The forward
relation Vf(α) is at most a polynomial of degree 2 and 3, in two and three dimensions
respectively. The behaviour ofVf changes a few times in the range of variation ofα, and
we have given expressions valid in each interval for all values of the coefficients of the
linear equation. We have shown that the analytical solution for the inverse relationα(Vf) is
computationally cheaper than a fast root-finding technique, even when the root is one of a
third-order polynomial. Finally we have extended our approach to the more general situation
of negative coefficients and rectangular grids. The solution we have proposed consists of a
sequence of simple linear geometrical transformations, translations, and mirror reflections
and of anif-else if-endifconstruct containing the analytical expressions we have derived,
which can be easily implemented in a numerical routine.
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