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The computational-geometric problems arising when a linear interface cuts a cube
are considered. They are of interest in particular for the calculation of volume frac-
tions or interface positions in three-dimensional interface calculations in the Volume
of Fluid (VOF) methods. Typically, the normal vector is known. One then wants to
compute the volume fraction knowing the interface position, or conversely the inter-
face position knowing the volume fraction. Explicit expressions of general use are
given, and the algorithms used to search for solutions are described in detail. Explicit
formulas for cubic roots are found to be less than two thirds as time consuming as
Newton—Raphson iterations. © 2000 Academic Press
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1. INTRODUCTION

The reconstruction of a boundary between two materials in a numerical computatiol
of interest in many different domains, ranging from scientific topics such as combustic
two-phase flows, and computer graphics to applications such as ink-jet printers, nozzles
other technologies. Among the approaches which have been proposed and have unde
continual improvement we can mention markers [1], level sets [2], and volume tracki

[3-5].

In this note we focus on one of the basic steps in these algorithms: the computat
of the intersection of a planar interface with a right hexahedron or a cube, as a funct
of the volume below the interface. More precisely, the available data in the computat

comprise the volume fractios in each cell of the grid: cells cut by an interface hage
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between zero and one; those without an interface Naegual to zero or one. We initially
approached this problem from the point of view of volumetric tracking methods and spe
ically a piecewise linear interface calculation (PLIC), although the results are useful i
more general context. In PLIC methods, the boundary between materials is approximate
each computational cell with a linear interface defined by the equation= «, wherem

is given. (Indeed the problem of finding the normal veahds complex and nonlocal and is
discussed independently in the references.) We distinguish the “forward” problem, tha
to find the volume fractioW; occupied by one species givenfrom the “inverse” problem,
which consists of finding: given the volume fraction. The relation betweénanda is
continuous and one-to-one but in PLIC the overall reconstruction is not in general con
uous at the cell boundary. Both the inverse and forward problems can occur several tir
according to the chosen numerical schemes, during the reconstruction and propagation «
interface.

As stated, the problem is essentially geometric in nature. Several implementations
extensively embeddetielse if-endifconstructs. In some cases, the large number of leve
in these contructs and the number of cases make the code difficult to compile optim
and to maintain. In this note, a careful investigation of the geometry and of the analyti
expression connecting anda produces a significant reduction in the number of possibl
cases and a corresponding streamlining of the numerical algorithm, increasing in this \
the efficiency and clarity of the resulting code.

2. THE STANDARD PROBLEM

In three-dimensional (3D) space with Cartesian coordinétesx,, x3) we consider
a rectangular parallelepiped of sidés¢;, Ax;, Axz and a plane with normal vector
m = (my, My, M3) given by the equation

M1X1 + MaX2 + M3X3 =, 1)

where the plane constamis a parameter related to the smallest distance from the origin.
the standard forward problem we assume that the three coeffiongiate all positive and
we need to determine the “cut volumABGHKNMLof the rectangular cell which is also
below the given plane, as shown in Fig. 1. Then the function, xo, X3) = Myx; + MaXo +
M3X3 — « IS negative at poinf and positive at poinf , while the vectom is pointing toward
the region wherd is positive. If we interchange the two species the normal vector revers
its orientation, the coefficients; are now negative, and the volume of interest become
DCFEKNML In Ref. [6] we have shown that the volurABGHKNML s given by the
expression

3 3
1
V=—"— 3—2 Fa(o — M AX; EF — mAx) |, (2

6 My MyMms [05 L 3(a ] |)+i:1 3(@ — amax+ M i) ()

With omax= Zi?’:lmi AX; and the functior,(y) defined as

y" fory >0
Fn(y) =
0 fory<=0.
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FIG. 1. The “cut volume” is the region inside the parallelepipeg8iCEFGHand below the planBIK.

We recall that the first ternie®/6mymoms) is the volume of the tetrahedroklJK, the
first sum removes tetrahedra suchH®L, when the vertice$, J, andK move beyond
the cell faces, and the second sum adds back the volumes of the smaller tetrahedra
as GOPM, when the linedJ, JK, andKI are completely outside the cell boundary. The
functionsF3(y) make sure that these terms are algebraically added only when the abc
mentioned conditions are satisfied. The functibrvaries from zero, when =0, to the
volume of the parallelepipedly = Ax; AX2AX3, Whena = omax. The volume fractiorV

is defined a3/t =V/V, and varies correspondingly from zero to one. In two dimension
(2D), expression (2) simplifies to

1

2
_ 2 ) .
= mm, ot — Z Fola —myAX) |, 3)

i=1

where, as shown in Fig. 2, the contributiondtoepresent respectively the areas of the thre«
trianglesAEH, BFE, andDGH, which are geometrically similar. Again, the functiép(y)
makes sure that the last two triangles are considered only when the vettiaad H
move outside the cell. For the moment, we restrict our analysis to a unitary Awpe, 1;
then the volumev and the volume fractions coincide. We also normalize the plane
equation (1) by dividing itby>"3 ,m;); thenamax= S_>_;m; = 1. The normalization of the
two-dimensional problem is similar. Later, we will generalize this procedure to negative
and to a rectangular parallelepiped. We can now summarize some useful properties:

(1) V is a continuous, one-to-one, monotonically increasing functian wfth contin-
uous first derivative.
(2) BothV and« vary in the range [01].
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FIG. 2. The “cut volume” refers to the region within the rectan§BCD which also lies below the straight
line EH.

(3) The expression fov is invariant with respect to a permutation of the indices, so wi
need to consider only one case, say< m, <mgin 3D andm; <m; in 2D.

(4) The graph ol has odd symmetry with respect to the pai¥t o) = (1/2, 1/2), so
we restrict the analysis to the range<x < 1/2.

(5) In 3D we letmi; =m; + m, and m=min(my, m3); thenV varies cubically in
the region O< @ < my, quadratically inm; < o < my, again cubically inm; <o <m,
and finally inm < o < 1/2 cubically if m=m3 and otherwise linearly itn=m;y,; in
2D with m=my, V varies quadratically in the region®« < m and linearly inm <
a<1/2.

(6) In the interval O< o < 1/2 and for arbitrarym; there is a lower bound fov¥ («).

In 3D this line is realized fom; = my =m3 = 1/3, corresponding to a plane cutting each
coordinate plane with a 4gangle line. The volum¥ is a cubic function ok in the whole
domain and it is given by the expressiovis= 9«°/2 for 0<a <1/3 andV = (—18«° +
27a% — 9 + 1)/2for 1/3 < a < 1/2. In 2D the lower bound is realized for, =m, = 1/2,
corresponding to a 48angle line, and it is a quadratic function@fV = 2.

(7) Inthe sameregionthereisalsoanupperbound. In 3D this is the linenvithm, =0
and it represents a plane parallel to one of the three coordinates planes. The fMriation
is linear:V = «. In 2D the same linear function is obtained with = 0, representing a line
parallel to one of the two coordinate axes.

(8) In 3D, the limitm; — 0 is smooth: the lines become those of the two-dimension:
problem. In particular, the first cubic region collapses into the origin, the quadratic o
extends itself to & o < m, =m, the next cubic region collapses to the point of the line a
o =m, and finally the straight line, since naws = (1 — m) > my, =m, extends itself to
the intervaim <« < 1/2. The further limitm, — 0 is also smooth with the quadratic region
collapsing into the origin.

The two limiting curves are shown in Figs. 3 and 4 for the 2D and 3D cases, respectiv
together with two other intermediate lines. The full circles in the two figures denote t
points where the functiol («) changes its behaviour.

A direct numerical implementation of formula (2) becomes unstable winer- O or
bothmy, m, — 0. In the 2D problem one must face only the first limit. This is becaus
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FIG. 3. The upperand lower limiting curves (solid lines) for the two-dimensional problem are shown togett
with two intermediate lines (dashed lines). The functitfar) changes from quadratic to linear behaviour at the
points denoted by the full circles.
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FIG.4. Theupperand lower limiting curves (solid lines) for the three-dimensional problem are shown toget!
with two intermediate lines (dashed lines). For these two lines, the top oriehasm,) < mg; the reverse is true
for the lower one. The full circles denote points where the funciém) changes behaviour.
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V — lase — 1andwhemn; becomes very small the numerator of expression (2) must
O(my). However, this small number is obtained as an algebraic suth(bf numbers and
this is the source of a numerical instability due to roundoff errors. The oscillations beco
wilder and wilder asn; — 0. A simple, but efficient solution is to artificially set to zem

(or bothm; andmy, if necessary), when it is smaller than a prescribed value, and to use
finite limit of formula (2). The error introduced in the direction of the normal vector is the
very small. Elsewhere formula (2) can be used safely. However, from the point of view
a numerical implementation this is not much cheaper than expanding analytically equa
(2) in each region and implementing a simpielse if-endifconstruct. The analytical
expressions for both the forward and inverse problems, restricted to the rargés01/2
and 0< « < 1/2, can be derived with some straightforward algebra from relations (2) and (

Two-Dimensional Forward Problem

For the 2D forward problem we have

2

o
V=— for0< m,
2m(1—m) =0
(07
= -V, form<a<1/2.
a-m se=lf

Two-Dimensional Inverse Problem

The 2D inverse problem is specified by
a=+2m1-mV forO<V <V,
a:V(l—m)+g forVi<V <1/2,

with V; =m/2(1 — m). Notice that the limitm=0 is correctly described by these ex-
pressions.

Three-Dimensional Forward Problem

In 3D the forward problem is

3

o
- - forO<a <my,
6m;myms
-m
V=M+Vl form; <o <my,
2momg
2(3Mm, — m2(m; — 3a) + m3(m, — 3«
Vza( 12 — @) + My(my ) + MMy ) formy<a <m;

6m;myms

for the fourth interval there are two possible cases, onerferms < m;, and the other for
m=mpy < Ms.

_ a?(3— 2a) + m2(my — 3a) + m3(My — 3ar) + M3(M3 — 3a)

V
6m;moms

formg<a<1/2,

200 — Mo

V = formp<a<1/2.
2m3 120 = /
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Three-Dimensional Inverse Problem

The 3D inverse problem is given by

o = 6mmmgV, forO<V <V,

1
“=3 (my + \/m% + 8momg(V — V), forVi<V <V,

P(a):a’sa3+a§a2+a’la+a{)=0, for Vb <V < Vs;

again there are two cases in the fourth interval, onefoe V31 < V3, and the other for
V3= V32 < V31!

Pl)=aja’®+aje®+aja+ay=0, forVa<V<1/2

(x=m3V+%, for V3, <V <1/2.

In the previous relation¥; = mf/(max(szmg, €)), which is an approximation of the
valuem§/6m2m3. This approximation is needed because the limitfpasm;, m, — 0is
zero; however, numerically we must prevent the denominatyi &fom becoming zero, so
€ is an arbitrary small number. Aside from that, the above set of expressiovsdiodo is
well behaved numerically for all possibhe . The other limiting values of the range of va-
lidity of each relation are given by the following expressiovis= V; 4+ (m; — my)/2mg,

V3 = V31 =[m(3my2 — m3) + mZ(my — 3mg) + m3(m; — 3mg)]/(6mymmz) whenm=
m3 or V3 = V3, = my,/2mz whenm = my,. For the coefficients of the two cubic polynomi-
als we havea=—1, a)=3my, & = —3(MZ + m3), ay=mj + m3 — 6mmymV, aj =
—2,a) =3,a] = —3(m? + m3 + mg), andaj =m3 + m3 + m3 — 6mMmymymzV.

In the third and fourth region, whek&; <V < 1/2, we need to find the roots of the cubic
polynomial P(«) that has the following properties:

(1) P(xo00) =Fo0.

(2) For agivenV in these two regions, there are three real rootB @f) and the proper
one is the middle one. For this ro®{«) is an increasing function ef, as shown in Fig. 5,
consistent with properties (1) and (5) of formula (2).

An analytical solution can now be found easily [7, 8]. We first dividepthe third-degree
polynomial in«, so thatag =1, and let

G _aa—3a &
Po = Go = 6 57"

3 9
then the discriminand = pg + g2 is negative, which is the condition for having three real
roots. Finally by letting [9] co&6) = do/+/— g, it follows that the root of interest is

o = /= po (+/35sind — cosv) — %.

While all previous analytical relations fo&f and« involve at most the calculation of a
square or a cubic root, here we need to evaluate a few square roots and trigonometric f
tions. Itis then questionable if for this case a direct root-finding routine is computationa
less expensive. We have implemented such a routine based on the Newton—Raphson
method in conjunction with the secant method [10]. In the case where the NR iteration se



CONNECTING LINEAR INTERFACES AND VOLUME FRACTIONS 235

1.3 . . .
14 .
—_ ] 4
]
=
=
S
S’
-%
04 -
—07 T T 1
-0.5 0 1 1.5

alpha

FIG.5. Typical behaviour of the cubic polynomiRI(«). The region of validity of the expression is that within
the two vertical segments.

the point outside the-interval, we make a linear interpolation instead of a simple bisectio
of the interval. This is motivated by the smooth behaviour of the functiofas seen in
Figs. 4 and 5), and we have found that this consistently reduces the number of iterat
when the NR forecast goes out of range. An optimal initial guese fisrcalculated with
a linear average from the andV values that delimit the region wheké(«) is cubic.
We run the problem for several millions of different situations by randomly changing tl
coefficientsm; and the points inside the proper range in volume fraction. We need an :
erage number of less than four iterations to achieve a convergencg0t® (in double
precision); nevertheless the direct use of the analytical expressions (in our case the gcc
library functions) is less than two-thirds as time consuming as the numerical approach

3. THE GENERAL PROBLEM

We are now in the condition to generalize both the forward and inverse problems
rectangular grids and negating. For the extension to rectangular grids we consider formul
(2) for the volumeV and divide it by the cell volum&/y = Ax; Axa Axz. We then obtain
the following expression for the volume fractidh=V/ Vj:

3 3

1 od — Z Fa(a — mAX) + Z Fa(a — amax+ M AX) . (4)

Vi —
6= miAX; i—1 i—1

We observe that with the linear transformatimn= m; Ax; formula (4) reduces to expression
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(2) with Ax; =1, as long as the plane equation (1) is normalized witl = 1. All the re-
sults obtained in the previous section can then be easily extended to a rectangular cell.
observation applies to the two-dimensional case as well.

If one or more of them; are negative, the geometry can be brought to the standard ce
depicted in Figs. 1 and 2, with the linear transformatioe: Ax; — X;, which describes a
simple mirror reflection with respect to the plane= Ax; /2. After the calculation o4
or a with the given analytical expressions, the configuration is brought back to the act
position with similar reflections.

Finally, it is often necessary to calculate the voluvheut by the linear interface relative
to a right parallelepiped that is different from the grid cell. This is the case if, for exampl
it is necessary to calculate the volume fraction in neighbouring cells in an iterative sche
which tries to optimize the value of the normal vector[3, 5] or in the propagation of
the interface, in particular with split schemes, where the volinnepresents the fluid flux
across the cell boundary. This problem can be easily solved by moving the origin of |
local Cartesian coordinate system (in our case paiof Figs. 1 and 2) to one vertex of the
parallelepiped. The translation is clearly described by the linear transformatiens —

Xoi, Where the vertexxo1, Xo2, Xo3) is such that all sideax’ of the right tetrahedron are
positive.

4. CONCLUSION

We have presented a unified and general approach to the problem of connecting
nonhomogeneous term of a linear equation representing the interface to the volum
fraction Vs of a cell of a rectangular grid divided in two parts by the interface. The forwar
relation Vi(«) is at most a polynomial of degree 2 and 3, in two and three dimensiol
respectively. The behaviour & changes a few times in the range of variatiorvpfind
we have given expressions valid in each interval for all values of the coefficients of t
linear equation. We have shown that the analytical solution for the inverse redatpnis
computationally cheaper than a fast root-finding technique, even when the root is one
third-order polynomial. Finally we have extended our approach to the more general situa
of negative coefficients and rectangular grids. The solution we have proposed consists
sequence of simple linear geometrical transformations, translations, and mirror reflecti
and of anif-else if-endifconstruct containing the analytical expressions we have derive
which can be easily implemented in a numerical routine.

REFERENCES

1. S. Popinetand S. Zaleski, A front tracking algorithm for the accurate representation of surface tetision,
Numer. Meth. Fluids775-793 (1999).

. J. A. Sethianl_evel Set Method&Cambridge Univ. Press, Cambridge, UK, 1996).

. W. J. Rider and D. B. Kothe, Reconstructing volume trackingomput. Physl41, 112—-152 (1998).

4. R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfaciahfiow. Rev.
Fluid Mech.31, 567-603 (1999).

5. J. E. Pilliod, Jr., and E. G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking mate

interfaces. Technical report, Lawrence Berkeley National Laboratory, 1997. No. LBNL-40744.

w N

6. D. Gueyffier, A. Nadim, J. Li, R. Scardovelli, and S. Zaleski, Volume of fluid interface tracking with smoothe
surface stress methods for three-dimensional fldwSomput. Physl52, 423—-456 (1999).



CONNECTING LINEAR INTERFACES AND VOLUME FRACTIONS 237

7. J. Li, Résolution numefique de lIEquation de Navier-Stokes avec reconnexion d’interfaceshddie de suivi
de volume et applicatioa l'atomisation. Ph.D. thesis, UnivemsiPierre et Marie Curie, 1996.

8. M. Abramowitz and I. A. Stegurtiandbook of Mathematical Functior{dlational Bureau of Standards,
Washington, DC, 1964).

9. W. H. BeyerCRC Standard Mathematical TabJe6th Ed. (CRC Press, Boca Raton, FL, 1982).

10. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlhgnerical Recipe@Cambridge Univ. Press,
Cambridge, UK, 1986).



	1. INTRODUCTION
	2. THE STANDARD PROBLEM
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	3. THE GENERAL PROBLEM
	4. CONCLUSION
	REFERENCES

